Geim, AK & Novoselov, KS The Rise of Graphene. Nat. Mater. 6183–191 (2007).
Wang, QH, Kalantar-Zadeh, K., Kis, A., Coleman, JN & Strano, MS Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnology. seven699-712 (2012).
Li, L et al. Black phosphorus field effect transistors. Nat. Nanotechnology. 9372–377 (2014).
Novoselov, KS et al. Electric field effect in atomically thin carbon films. Science 306666–669 (2004).
Fan, Q. et al. Biphenylene network: a non-benzenoid carbon allotrope. Science 372852–856 (2021).
Kolmer, M. et al. Rational synthesis of atomically precise graphene nanoribbons directly on metal oxide surfaces. Science 369571–575 (2020).
Yu, H., Xue, Y. & Li, Y. Graphdiyne and its assembly architectures: synthesis, functionalization and applications. Adv. Mater. 31e1803101 (2019).
Bakharev, PV et al. Chemically induced transformation of bilayer graphene grown by chemical vapor deposition into fluorinated monolayer diamond. Nat. Nanotechnology. 1559–66 (2020).
Toh, CT et al. Synthesis and properties of self-supporting monolayer amorphous carbon. Nature 577199-203 (2020).
Cui, X et al. Wind up transition metal dichalcogenide nanoscrolls via a drop of ethanol. Nat. Common. 91301 (2018).
Wan, J. et al. Ultra-thin solid electrolyte interphase evolution and crumpling process in lithium-ion batteries based on molybdenum disulfide. Nat. Common. ten3265 (2019).
Hirsch, A. The era of carbon allotropes. Nat. Mater. 9868–871 (2010).
Simon, P. & Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. seven845–854 (2008).
Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 55643–50 (2018).
Zhai, HJ et al. Observation of an all boron fullerene. Nat. Chem. 6727-731 (2014).
Jena, P. & Sun, Q. Atomic Superclusters: Design Rules and Potential for Material Building Blocks. Chem. Round. 1185755–5870 (2018).
Blank, VD et al. High pressure polymerized phases of C60. Carbon 36319-343 (1998).
Okada, S. & Saito, S. Electronic and energetic structure of pressure-induced two-dimensional C60 polymers. Phys. Rev. B 591930-1936 (1999).
Xu, CH & Scuseria, GE Theoretical predictions for a two-dimensional rhombohedral phase of the solid C60. Phys. Rev. Lett. 74274-277 (1995).
Makarova, TL et al. Magnetic carbon. Nature 413716–718 (2001).
Tanaka, M. & Yamanaka, S. Vapor phase growth and structural characterization of magnesium Mg-doped two-dimensional fullerene polymer single crystals2VS60. Christ. Growth Dice. 183877–3882 (2018).
Pekker, S. et al. Monocrystalline (KC60)not: a conductive linear alkaline fulleride polymer. Science 2651077-1078 (1994).
Porezag, D., Pederson, MR, Frauenheim, T. & Kohler, T. Structure, stability and vibrational properties of polymerized C60. Phys. Rev. B 5214963–14970 (1995).
Haddon, RC et al. Making C movies60 etc70 by alkaline doping. Nature 350320–322 (1991).
Wågberg, T. & Sundqvist, B. Raman study of two-dimensional Na polymers4VS60 and tetragonal C60. Phys. Rev. B 65155421 (2002).
Long, VC et al. Vibrational properties in the far infrared of C high pressure high temperature60 polymers and C60 dimer. Phys. Rev. B 6113191–13201 (2000).
Chen, Y. et al. Black arsenic: a layered semiconductor with extreme in-plane anisotropy. Adv. Mater. 30e1800754 (2018).
Xia, F., Wang, H. & Jia, Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Common. 54458 (2014).